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Pyrolysis of the 1,3-dipole unsymmetrical diaryltriazene 1-oxides in acetonitrile and toluene shows that these compounds

may serve as a source of aryl radicals.

Previously, we have reported that unsymmetrical diaryl-
triazene 1-oxides did not undergo 1,3-dipolar cycloaddition
reactions with tetracyanoethylene, instead charge-transfer
complexes were formed.1 On the other hand, photolysis
of these oxides led to their decomposition. 2-Hydroxyazo-
benzene, mono- and di-substituted biaryls were produced.2

Therefore, it seemed desirable to study the thermal e�ect
on this 1,3-dipole system in organic solvents. This paper
presents our results obtained from the pyrolysis of various
N1,N3-diaryltriazene 1-oxides in acetonitrile and toluene.
Nitrogen was bubbled through solutions of 0.5 mmol

of triazene 1-oxides 1 in dry acetonitrile to remove the
oxygen, and the sealed ampoules were heated for 4 h (see
Experimental section). The reaction mixtures were identi®ed
and quanti®ed through gas chromatography coupled with
mass spectrometry (GC-MS), by comparing the peak areas
and fragmetation patterns of the products with those of
authentic samples.
As shown in Scheme 1, pyrolysis of compounds 1 in

acetonitrile led to the formation of azoxybenzene 2 (major
product 10.3±36%), azobenzene 3, diarylamines 4, biaryls 5
and arenes 6. In addition to these ideni®ed compounds a
multicomponent mixture is produced. The individual com-
ponents of this mixture are characterized by higher retention
times and therefore probably of higher molecular weight.
None of these peaks has so far been identi®ed.
Earlier Morgan and Walls3 had proposed that pyrolysis

of 1,3-di-p-tolyltriazene proceeds via fragmentation into
p-polylaminyl radicals. In addition Hardie and Thomson4

found that the tautomerism of asymmetric triazenes results
in the production of two di�erent aryl radicals and two
arylaminyl radicals.
This partitioning phenomenon could not be observed by

Morgan and Walls3 because their triazenes were symmetri-
cally substituted, and it will probably not occur in this
investigation because an oxygen atom shift would not as
easy as a (solvent mediated) hydrogen shift. In accordance
with the literature results above, a rational formation of

azoxybenzene 2, azobenzene 3, diarylamines 4, biaryls 5 and
arenes 6 is presented in Scheme 2 featuring radical pathways
throughout.
Pyrolysis of triazenes 1-oxides 1a±d may lead to cleavage

into the corresponding hydroxyphenylaminyl and aryl-
diazenyl radicals. The latter may undergo loss of nirogen to
form an aryl radical and/or to react with hydroxyphenyl
aminyl radical to form either compound 8 or nitrosobenzene
with the aryldiimine 7. It has been reported that triazene
1-oxides may exist in a tautomeric mixture with their
hydroxytriazene form.5 The N0OH tautomer of 1 may be
envisaged as the 1 :1 adduct of aryldiazine 7 and nitroso-
benzene, since it had earlier also been demonstrated that
a-azoalcohols may be generated by addition of diazenes to
aldehydes7±9 (but not to ketones), and nitrosobenzene may
well be regarded as aza-analogous to benzaldehyde. Ketone-
derived a-hydroxydiazenes have been reported by Schulz
et al.,10 and the proposed fragmentation pattern for 1
is well in accord with the suggested fragmentation of
a-hydroperoxy diazenes11 and a-hydroxydiazenes,12 which
have been demonstrated as a source of alkyldiazenes.
Diimines 7 may either form the ayldiazenyl radicals or
lose nitrogen to produce the arenes 6; loss of nitrogen from
the aryldiazenyl radical leaves an aryl radical which may
dimerise to form the biaryls 5. On the other hand, loss of
dinitrogen oxide (N2O) from compound 8 generates phenyl-
aminyl and aryl radicals. The latter can dimerise into the
biayls 5 or couple with phenylaminyl radical to form the
penylarylamines 4. Alternatively, phenylaminyl may react
with any aryl to form phenylnitrene and the corresponding
arenes 6; dimerisation of the pheylnitrene results in for-
mation of azobenzene 3. It should be noted that phenyl-
diazene may give dinitrogen and hydrazobenzene in a
bimolecular process.13 Moreover, hydrazobenzene could be
converted into 3 by dehydrogenation.
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Scheme 1 a Ar � Ph; b Ar � p-MeC6H4; c Ar � p-MeOC6H4;
d Ar � p-ClC6H4

Scheme 2 a Ar � Ph; b Ar � p-MeC6H4; c Ar � p-MeOC6H4;
d Ar � p-ClC6H4
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The pyrolysis of triazene 1-oxides 1 in toluene was investi-
gated qualitatively. As expected, arylation of toluene to
form the three isomers 9±11, as well as formation of benz-
aldehyde 12, cresols 13 and nitrosobenzene 14, 1,2-diphenyl-
ethene 15 besides 2±6 were observed. The reaction products
were identi®ed by GC-MS as in the case of acetonitrile, as
solvent. The product pattern was rationalised in the same
manner as in the case of acetonitrile, assuming radical pro-
cesses throughout. Formation of benzaldehyde 12 and cre-
sols 13 in this case may be attributed to toluene acting as a
hydrogen source and consequently giving rise to benzyl rad-
icals which have to react with some oxygen source (H2O).
1,2-Diphenylethene 15 may be formed by combination of
benzyl radicals with 12.
These results generally show that diaryltriazene 1-oxides 1

may serve as a source of aryl radicals. One has, however,
to accept accompanying formation of arylamino and aryl-
hydroxyamino radicals with their own follow-up reactions.

Experimental

Melting points were taken with a microscope/Reichert Thermovar
and Gri�n apparatus and uncorrected. The triazene 1-oxides 1a±d
(1a: mp 127 88C, lit., 127 88C. 1b: mp 130±131 88C, lit., 131 88C. 1c: mp
113±114 88C, lit., 114 88C. 1d: mp 146±147 88C, lit., 146 88C)14 were
prepared according to the literature.15 Acetonitrile and toluene were

puri®ed following Vogel,16 dried and distilled. GC-MS spectra
were recorded using a HP5890 series II Gas chomatograph and
HP5971 mass-selective detector (Hewlett-Packard) using SE-54 on
Chromosorb as a column packing material (polysiloxane with 94%
methyl, 1% vinyl, and 5% phenyl). The column length was 25 m,
inner diameter 0.25 mm and outer diameter 0.38 mm.

General method.ÐSolutions of 0.5 mmol of each unsymmetrically
substituted triazene 1-oxide 1 in 1 ml of the dry reactant solvent
(either acetonitrile or toluene) were placed in sealed ampoules
and kept for 8 h at 90 88C. Single ampoules were then withdrawn for
GC-MS analysis. Available authentic samples were used for the
identi®cation and quanti®cation of the products; the other com-
pounds were identi®ed by comparison of spectral and physical data
with those of reported samples.
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Scheme 3 a Ar � Ph; b Ar � p-MeC6H4; c Ar � p-MeOC6H4;
d Ar � p-ClC6H4

Scheme 4 a Ar � Ph; b Ar � p-MeC6H4; c Ar � p-MeOC6H4;
d Ar � p-ClC6H4
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